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Stochastic Portfolio Theory was first introduced by Robert Fernholz. One
considers the market weights

µit =
Sit

S1
t + · · ·+ Sdt

where S1
t , . . . , S

d
t are the market capitalizations of d stocks.

A basic goal is to find self-financing trading strategies θt = (θ1
t , . . . , θ

d
t )

that perform well relative to the market. The relative wealth is

V θt = θ>t µt = V θ0 +

∫ t

0

θ>s dµs.

There is no bank account, but holding (a constant fraction of) the
market portfolio is “relatively risk-free”.

The market weights are Itô semimartingales dµt = btdt+σtdWt valued in

∆d = {x ∈ Rd+ : x1 + · · ·+ xd = 1}.
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Definition. Given T ≥ 0, a self-financing trading strategy θ is a
relative arbitrage over [0, T ] if

V θ0 = 1, V θ ≥ 0, V θT ≥ 1, P (V θT > 1) > 0.

Questions:

I When does relative arbitrage over [0, T ] exist for some T ≥ 0?

I How small/large can/must T be?

I What does θ look like? How (if at all) does it depend on the
probabilistic properties of S (or µ)?
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Conditions for relative arbitrage over [0, T ]

Fernholz ’02: Large enough T , provided for some δ > 0, ε > 0,

max
1≤i≤d

µit ≤ 1− δ, λmin

(
d

dt
〈logS〉t

)
≥ ε (∗)

Fernholz, Karatzas, Kardaras ’05: Any T > 0, still assuming (∗).

Fernholz, Karatzas ’05: Large enough T , provided for some η > 0,

d∑
i=1

µit
d

dt
〈logµi〉t ≥ η (∗∗)

Banner, D. Fernholz ’08 and Pal ’16: Short-term relative arbitrage.

One might suspect that (∗) is an unrealistic condition, while (∗∗) is much
better. Is it sufficient for short-term relative arbitrage? Until recently the
answer to this question was unknown.
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Theorem (Fernholz, Karatzas, Ruf (FKR) ’18).

The condition (∗∗) is not enough to guarantee relative arbitrage
over [0, T ] for any T > 0.
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We’ll use a condition that is similar to, but not exactly the same as, the
condition (∗∗):

The market weight process dµt = btdt+σtdWt with
values in ∆d is admissible if tr(σtσ

>
t ) ≥ 1.

We’d like to compute the smallest time horizon beyond which relative
arbitrage is always possible:

T∗ = inf

{
T ≥ 0:

every admissible market weight process
admits relative arbitrage over [0, T ]

}
For d ≥ 3, FKR show that

1

d(d− 1)
≤ T∗ ≤ 1− 1

d
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Trading in the market weights µ1
t , . . . , µ

d
t is equivalent to trading in 1

“relatively risk-free” asset (the benchmark) and d− 1 “relatively risky”
assets. We make this explicit by a change of coordinates:

∆d
Q

D = Q(∆d)

µt = (µ1
t , . . . , µ

d
t ) Xt = (X1

t , . . . , X
d−1
t ) = Qµt

7/25



Correspondence between:

dµt = btdt+ σtdWt dXt = βtdt+ νtdWt

self-financing trading in µ self-financing trading in (1, X)

V θt = θ>t µt = v0 +

∫ t

0

θ>s dµs V ϕt = v0 +

∫ t

0

ϕ>s dXs

µ is admissible, tr(σtσ
>
t ) ≥ 1 X satisfies tr(νtν

>
t ) ≥ 1

No relative arbitrage
exists over [0, T ]

X satisfies (NA) on [0, T ]
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Upper bounds on T ∗ can be derived using functionally generated
portfolios.

For u ∈ C2(Rd−1), Itô’s formula states that

u(X0) +

∫ t

0

∇u(Xs)
>dXs = u(Xt)−

1

2

∫ t

0

tr(∇2u(Xs)νsν
>
s )ds.

This is the wealth V ϕt of the self-financing trading strategy ϕt = ∇u(Xt)
with initial wealth u(X0).

Example: Take u(x) = 1− 1
d − |x|

2 ≥ 0 on D. In an admissible model,

V ϕT − V
ϕ
0 = −u(X0) + u(XT ) +

∫ T

0

tr(νsν
>
s )ds ≥ T − (1− 1

d ).

Hence T∗ ≤ 1− 1
d . This is the upper bound of FKR.

What about lower bounds on T∗?
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Idea: Let T > 0 and suppose X is a martingale on [0, T ]. This model
does not admit relative arbitrage on [0, T ], so T ≤ T∗.

Theorem. With the notation ζ(X) = inf{t ≥ 0: Xt /∈ D}, one
has the representation

T∗ = sup

{
ess inf ζ(X) :

X is an Itô martingale in Rd−1

with d
dt tr〈X〉t = 1

}

But how do we find martingales that don’t slow down, yet remain in D
for a deterministic amount of time?
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Here is a 2-dimensional martingale that doesn’t slow down, yet stays
bounded for deterministic amounts of time:

d

(
Xt

Yt

)
=

1√
X2
t + Y 2

t

(
Yt
−Xt

)
dWt = σtdWt

It satisfies d(X2
t + Y 2

t ) = tr(σtσ
>
t ) = |σt|2dt = dt and looks like this:

. . . but is poorly adapted to the geometry of D.

11/25



Here is a 2-dimensional martingale that doesn’t slow down, yet stays
bounded for deterministic amounts of time:

d

(
Xt

Yt

)
=

1√
X2
t + Y 2

t

(
Yt
−Xt

)
dWt = σtdWt

It satisfies d(X2
t + Y 2

t ) = tr(σtσ
>
t ) = |σt|2dt = dt and looks like this:

. . . but is poorly adapted to the geometry of D.
11/25



Focus on τ(X) = inf{t ≥ 0: Xt /∈ D} and d− 1 = 2.

Pick u ∈ C2(R2)
and define

ν(x) =
H∇u(x)

|∇u(x)|
where H =

(
0 −1
1 0

)
Let W be a 1-dimensional Brownian motion and suppose X solves

dXt = ν(Xt)dWt, X0 ∈ D.

By Itô and since ∇u>ν ≡ 0,

t+ u(Xt) = u(X0) +

∫ t

0

(
1 +
∇u>H>∇2uH∇u

2|∇u|2
(Xs)

)
ds

Crucially, assume that (· · · ) = 0 and u|∂D = 0. Send t ↑ τ(X) to get

τ(X) = u(X0)

and hence T∗ ≥ supx∈D u(x).
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We were hoping to find u such that1 +
∇u>H>∇2uH∇u

2|∇u|2
= 0 on D

u = 0 on ∂D

This nonlinear PDE may look complicated. But actually it is equivalent
to the so-called arrival time formulation of mean-curvature flow.

13/25



The mean curvature (or curve shortening) flow deforms an initial
contour. Each point on the contour moves in the normal direction at a
speed equal to the curvature at that point.

The arrival time u(x) is (twice) the time it takes for the initial contour
∂D to reach the point x ∈ D.

For our D, the contours look like this:

∂D
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Theorem. Let d = 3, and let u ∈ C2(D) ∩ C(D) be the solution
to

(∗)

1 +
∇u>H>∇2uH∇u

2|∇u|2
= 0 on D

u = 0 on ∂D

Then

u(x) = sup

{
ess inf ζ(X) :

X is an Itô martingale in Rd−1

with d
dt tr〈X〉t = 1 and X0 = x

}
and hence T∗ = supx∈D u(x).
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Mean curvature flow has been studied extensively. Existence, uniqueness,
and regularity of the arrival time are well understood. See for instance
Huisken ’84, Gage & Hamilton ’86, Evans & Spruck ’91, Soner &
Touzi ’03, Kohn & Serfaty ’06, Colding & Minozzi ’16, ’18, etc.

Related equations arise as HJB equations in stochastic target problems
(Soner & Touzi ’02, ’02, ’03) as well as in certain deterministic games
(Kohn & Serfaty ’06).
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In dimension d− 1 = 2 one has the following result, first observed by
Gage & Hamilton ’86. The area A enclosed by smooth simple closed
curve that flows by mean curvature satisfies

dA

dt
= −

∫
Γt

κ(s)ds = −2π.

Γt

κ(s)ds
κ(s)ds

Lemma. The maximal arrival time of the moving front is A(0)/2π.
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Theorem. For d = 3, the smallest time horizon beyond which any
admissible market weight process admits relative arbitrage is

T∗ =

√
3

2π
≈ 0.28.

Compare this to the FKR bounds 0.16 ≤ T∗ ≤ 0.67.
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Theorem. Fix d ≥ 3. The value function

u(x) = sup

{
ess inf ζ(X) :

X is an Itô martingale in Rd−1

with tr〈X〉t ≡ t and X0 = x

}
is the unique outer limiting viscosity solution of the fully nonlinear
PDE

−1− sup

{
1

2
tr(a∇2u) : a � 0, tr(a) = 1, a∇u = 0

}
= 0 in D

u = 0 in D
c

Hence T∗ = supx∈D u(x).

This equation describes the “minimum-curvature flow” arrival time. It
coincides with the mean-curvature flow equation in the planar case
d = 3, but not in higher dimension.
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For T > T∗, relative arbitrage over [0, T ] is possible in any admissible
model. What do the trading strategies look like?

Let’s try a functionally
generated portfolio ϕt = ∇u(Xt) for some u ∈ C2(Rd−1).

V ϕt = u(X0) +

∫ t

0

∇u(Xs)
>dXs

= u(Xt)−
∫ t

0

1

2
tr(∇2u(Xs)νsν

>
s )ds

≥ u(Xt)−
∫ t

0

sup

{
1

2
tr(∇2u(Xs) a) : a ∈ Sd−1

+ , tr(a) ≥ 1

}
ds.

If u is a nonnegative solution to

−1− sup

{
1

2
tr(a∇2u) : a ∈ Sd−1

+ , tr(a) ≥ 1

}
= 0 on D,

we get relative arbitrage over [0, T ] for any T > u(X0). This looks like
the equation for mean curvature flow, but . . .
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tr(∇2u(Xs)νsν

>
s )ds

≥ u(Xt)−
∫ t

0

sup

{
1

2
tr(∇2u(Xs) a) : a ∈ Sd−1

+ , tr(a) ≥ 1
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ds.

If u is a nonnegative solution to

−1− sup
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1
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= 0 on D,
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The two equations are not the same!

−1− sup

{
1

2
tr(a∇2u) : a ∈ S2

+, tr(a) ≥ 1, a∇u = 0

}
= 0

−1− sup

{
1

2
tr(a∇2u) : a ∈ S2

+, tr(a) ≥ 1

}
= 0

The solutions are:

uess(x) = sup

{
ess inf τ(X) :

X is an Itô martingale in R2

d
dt tr〈X〉t ≥ 1 and X0 = x

}

uexp(x) = sup

{
E[τ(X)] :

X is an Itô martingale in R2

d
dt tr〈X〉t ≥ 1 and X0 = x

}
=

2

3
− |x|2

Conclusion: The functionally generated portfolio ϕt = ∇uexp(Xt) only
guarantees relative arbitrage over [0, T ] for T > 2

3 > T∗. This seems to
be optimal among functionally generated portfolios.
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T
0 T∗ =

√
3

2π

d−1
d = 2

3

∃ model with
no relative
arbitrage

All models admit
relative arbitrage

uexp(x) =
2
3
− |x|2

generates relative
arbitrage in every model

. . . but no single
functionally generated
portfolio achieves this
for all models.
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0 T∗ =

√
3

2π

d−1
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3

∃ model with
no relative
arbitrage

All models admit
relative arbitrage

uexp(x) =
2
3
− |x|2

generates relative
arbitrage in every model

. . . but no single
functionally generated
portfolio achieves this
for all models.

Conjecture: For every u ∈ C2(D), there exists some admissible
model X such that ϕt = ∇u(Xt) fails to generate relative arbitrage
over [0, T ] for all T < 2

3 .
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Here is a strategy for proving the conjecture. Fix u ∈ C2(D), and look
for an admissible model X such that

u(Xt)− u(X0) +
1

2

∫ t

0

tr(−∇2u(Xs)d〈X〉s) < 0, t ∈ (0, 2
3 ).

For this, it’s enough to locate a continuous function γ : [0, 2
3 )→ D with

u(γt)− u(γ0) +
1

2

∫ t

0

λmin(−∇2u(γs))ds < 0, t ∈ (0,
2

3
).

We can do this for some functions u, including uexp(x) = 2
3 − |x|

2.
Therefore, for these functions the conjecture is true.
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Summary: For admissible models with d = 3,

I relative arbitrage always exists beyond T∗ =
√

3
2π , but not always

before T∗.

I relative arbitrage is always generated beyond T = 2
3 using the

portfolio generating function uexp(x) = 2
3 − |x|

2.

I relative arbitrage is possible over [0, T ] for
√

3
2π < T ≤ 2

3 , but
seemingly not by a universal functionally generated portfolio.

Questions:

I Form of relative arbitrage strategies in the intermediate regime?

I Other variants of admissibility, like

d∑
i=1

µit
d

dt
〈logµi〉t ≥ 1

of Fernholz & Karatzas ’05, no longer yield mean-curvature flows.
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Thank you!
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