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that perform well relative to the market. The relative wealth is
t
Ve =0 =VY +/ 0] dus.
0

There is no bank account, but holding (a constant fraction of) the
market portfolio is “relatively risk-free”.

The market weights are 1t semimartingales dyu; = bidt + o:dW; valued in

E:{xeRi:xl—i—-n—i—azd:l}.
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Definition. Given T' > 0, a self-financing trading strategy 0 is a
relative arbitrage over [0, 7] if

Vi=1,Vv?>0 VEi>1, P(VE>1)>0.

Questions:
> When does relative arbitrage over [0, T] exist for some T' > 07
» How small/large can/must T' be?

> What does 6 look like? How (if at all) does it depend on the
probabilistic properties of S (or 1)?
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One might suspect that (x) is an unrealistic condition, while (xx) is much
better. Is it sufficient for short-term relative arbitrage? Until recently the
answer to this question was unknown.



Theorem (Fernholz, Karatzas, Ruf (FKR) '18).

The condition (%) is not enough to guarantee relative arbitrage
over [0,T] for any T > 0.
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We'll use a condition that is similar to, but not exactly the same as, the
condition (x:x):

The market weight process dyi; = bydt + o dW; with
values in Ad is admissible if tr(oy0,") > 1.

We'd like to compute the smallest time horizon beyond which relative
arbitrage is always possible:

T, — inf {T >0 every admissible market weight process }

admits relative arbitrage over [0, T

For d > 3, FKR show that



Trading in the market weights pi, ..., ud is equivalent to trading in 1
“relatively risk-free” asset (the benchmark) and d — 1 “relatively risky"
assets. We make this explicit by a change of coordinates:

Ad
- D = Q(a%)

,ut:(,u%,,uf) Xt:(tha"-anil):Q/’[’t



Correspondence between:

dut = btdt + O'tth dXt = ﬁtdt + thWt
self-financing trading in self-financing trading in (1, X)
t t
Ve =67 = v+ [ 6Tdu, Ve =t [ eldx.
0 0
p is admissible, tr(oyo,' ) > 1 X satisfies tr(vp,') > 1
No relative arbitrage -
exists over [0, 7] X satisfies (NA) on [0, 7




Upper bounds on T* can be derived using functionally generated
portfolios.



Upper bounds on T* can be derived using functionally generated
portfolios.

For u € C%(R4~1), 1td's formula states that

t 1 t
u(Xo) +/ Vu(X,) TdX, = u(X,) — 5/ tr(V3u(X,) v, )ds.
0 0

This is the wealth V,” of the self-financing trading strategy ¢; = Vu(X})
with initial wealth u(Xj).



Upper bounds on T* can be derived using functionally generated
portfolios.

For u € C%(R4~1), 1td's formula states that

1t
u(Xo) /Vu TdX, —u(Xt)—§/ tr(V3u(X,) v, )ds.

0

This is the wealth V,” of the self-financing trading strategy ¢; = Vu(X})
with initial wealth u(Xj).

Example: Take u(z) =1— % — [z > 0 on D. In an admissible model,

T
Vi =Vy = —u(X0)+u(XT)+/O tr(ver) )ds > T — (1 — ).

Hence T, <1 — é This is the upper bound of FKR.



Upper bounds on T* can be derived using functionally generated
portfolios.

For u € C%(R4~1), 1td's formula states that
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0

This is the wealth V,” of the self-financing trading strategy ¢; = Vu(X})
with initial wealth u(Xj).

Example: Take u(z) =1— % — [z > 0 on D. In an admissible model,

T
Vi =Vy = —u(X0)+u(XT)+/O tr(ver) )ds > T — (1 — ).

Hence T, <1 — é This is the upper bound of FKR.

What about lower bounds on 7.7
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Idea: Let T > 0 and suppose X is a martingale on [0,7]. This model
does not admit relative arbitrage on [0,7], so T' < T,.

Theorem. With the notation ((X) = inf{t > 0: X; ¢ D}, one
has the representation

i 5 i o ed—1
T, = sup {essinfC(X): X is an It6 martingale in R }

with & tr(X), = 1

But how do we find martingales that don't slow down, yet remain in D
for a deterministic amount of time?



Here is a 2-dimensional martingale that doesn't slow down, yet stays
bounded for deterministic amounts of time:

X; 1 Y, )
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It satisfies d(X? + Y;?) = tr(oy0, ) = |o¢|?dt = dt and looks like this:
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Focus on 7(X) = inf{t > 0: X; ¢ D} and d — 1 = 2. Pick u € C?(R?)
and define

)= T here = () )

Let W be a 1-dimensional Brownian motion and suppose X solves
dX; = I/(Xt)th, Xo€D.
By It6 and since Vu v =0,

t THT 2 H
t+MX0=MKﬂ+/ | YUl VEuHVu
) 2Vul?

Crucially, assume that (---) =0 and u|spp = 0. Send ¢ 1 7(X) to get
7(X) = u(Xo)

and hence T\, > sup,.cp u(x).



We were hoping to find u such that

Vu'H'V2u H Vu
1 = D
+ o[Vl 0 on

u=0 ondD

This nonlinear PDE may look complicated. But actually it is equivalent
to the so-called arrival time formulation of mean-curvature flow.



The mean curvature (or curve shortening) flow deforms an initial
contour. Each point on the contour moves in the normal direction at a
speed equal to the curvature at that point.

The arrival time u(x) is (twice) the time it takes for the initial contour
0D to reach the point z € D.



The mean curvature (or curve shortening) flow deforms an initial
contour. Each point on the contour moves in the normal direction at a
speed equal to the curvature at that point.

The arrival time u(x) is (twice) the time it takes for the initial contour
0D to reach the point x € D. For our D, the contours look like this:

oD




Theorem. Let d = 3, and let u € C%(D) N C(D) be the solution

to
Vu'H'V?uH Vu
1 =0 D
(%) T T on

u=0 ondD
Then

_ : X is an It6 martingale in R%1
u(x) = sup {essme(X). with %tr()@t — 1 and Xo =«

and hence T\, = sup,cp u(z).




Mean curvature flow has been studied extensively. Existence, uniqueness,
and regularity of the arrival time are well understood. See for instance
Huisken '84, Gage & Hamilton '86, Evans & Spruck '91, Soner &
Touzi 03, Kohn & Serfaty 06, Colding & Minozzi '16, '18, etc.

Related equations arise as HJB equations in stochastic target problems
(Soner & Touzi '02, ’02, '03) as well as in certain deterministic games
(Kohn & Serfaty '06).



In dimension d — 1 = 2 one has the following result, first observed by
Gage & Hamilton '86. The area A enclosed by smooth simple closed
curve that flows by mean curvature satisfies
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In dimension d — 1 = 2 one has the following result, first observed by
Gage & Hamilton '86. The area A enclosed by smooth simple closed
curve that flows by mean curvature satisfies

dA
o /1“,, k(s)ds ™

Iy

k(s)ds %”«%

k(s)ds

[ Lemma. The maximal arrival time of the moving front is A(0) /2. ]




Theorem. For d = 3, the smallest time horizon beyond which any
admissible market weight process admits relative arbitrage is

T, = @ ~ 0.28.
2w

Compare this to the FKR bounds 0.16 < T, < 0.67.



Theorem. Fix d > 3. The value function

. X is an It6 martingale in R4-!
u(x) = sup {ess inf ((X): with tr(X), = ¢ anngo " }

is the unique outer limiting viscosity solution of the fully nonlinear
PDE

1
—1—sup{2tr(av2u): a >0, tr(a) =1, aVu:O} =0 inD
u=0 inD°

Hence T, = sup,cp u(x).

This equation describes the “minimum-curvature flow" arrival time. It
coincides with the mean-curvature flow equation in the planar case
d = 3, but not in higher dimension.
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For T > T, relative arbitrage over [0,T] is possible in any admissible
model. What do the trading strategies look like? Let's try a functionally
generated portfolio ¢; = Vu(X;) for some u € C?(R?471).

t
VP =u(Xo)+ | Vu(X,) dX,
0

¢
1
=u(Xy) — / 3 tr(V2u(X,)vev, )ds
0
¢ 1
> u(Xy) — / sup {2 tr(V2u(X,)a): a € S‘fr_l, tr(a) > 1} ds.
0
If u is a nonnegative solution to
1
—1—sup {2 tr(aV2u): a € ST, tr(a) > 1} =0 onD,

we get relative arbitrage over [0,T] for any T > u(Xy). This looks like
the equation for mean curvature flow, but ...



The two equations are not the same!
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The solutions are:

. X is an It6 martingale in R?
Uess () = sup {ebsme(X). 4 (X), > 1and Xp =z }

X is an 1td martingale in R?
uexp(x) = sup {E[T(X)] ditr<X>t > 1 and XO =x }
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The two equations are not the same!

1
—1 —sup {2tr(aV2u): a €Sy, tr(a) > 1, aVu = 0} =0

0

1
-1- sup{2 tr(aVu): a € S%, tr(a) > 1}

The solutions are:

. X is an It6 martingale in R?
Uess () = sup {ebsme(X). 4 (X), > 1and Xp =z }

X is an 1td martingale in R?
Uexp(X) = Sup {E[T(X)] 4 tr(X), > 1 and Xo = }
2 2
=-—lz

~ o
Conclusion: The functionally generated portfolio ¢; = Viexp(X;) only
guarantees relative arbitrage over [0, 7] for T > 2 > T,. This seems to
be optimal among functionally generated portfolios.
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3 model with
no relative

2 2
Uexp(7) = 3 — |z
All models admit generates relative
arbitrage relative arbitrage arbitrage in every model
I i i > T
0 V3 d—1 _ 2
T, =37 d — 3

... but no single
functionally generated
portfolio achieves this
for all models.

Conjecture: For every u € C?(D), there exists some admissible

model X such that ¢; = Vu(X,) fails to generate relative arbitrage
over [0, 7] forall T < 2.

22/25



Here is a strategy for proving the conjecture. Fix u € C?(D), and look
for an admissible model X such that

uw(X,) — u(Xo) + %/O tr(—V2u(X,)d(X),) <0,  te(0,2).
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Here is a strategy for proving the conjecture. Fix u € C?(D), and look
for an admissible model X such that

W) =~ u(Xo) + 5 [ o(-TRuXX) <0t ©.3)

For this, it's enough to locate a continuous function : [0, 2) — D with

2

u(ye) — ulyo) + %/0 Amin(—V2u(75))ds < 0, t € (0, g)

We can do this for some functions u, including texp(z) = 2 — |2/
Therefore, for these functions the conjecture is true.



Summary: For admissible models with d = 3,

> relative arbitrage always exists beyond T, = § but not always
before T,.

> relative arbitrage is always generated beyond T = 2 using the

3
portfolio generating function Uexp () = 2 — |z|2.

> relative arbitrage is possible over [0,T] for 2—‘/3 <T< % but
seemingly not by a universal functionally generated portfolio.

Questions:
> Form of relative arbitrage strategies in the intermediate regime?

» Other variants of admissibility, like

4 d
P~ (log ), > 1
;ﬂtdt<0g,“>t_

of Fernholz & Karatzas '05, no longer yield mean-curvature flows.



Thank you!



